Part Number Hot Search : 
2SC2344P UTT75N75 74AC138A 001SM 34L223C MBT6B M306H2MC LH1540A
Product Description
Full Text Search
 

To Download 25L1605A Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 ADVANCED INFORMATION
MX25L1605A
16M-BIT [x 1] CMOS SERIAL FLASH
FEATURES
GENERAL * Serial Peripheral Interface (SPI) compatible -- Mode 0 and Mode 3 * 16,777,216 x 1 bit structure * 512 Equal Sectors with 4K byte each - Any Sector can be erased individually * 32 Equal Blocks with 64K byte each - Any Block can be erased individually * Single Power Supply Operation - 2.7 to 3.6 volt for read, erase, and program operations * Latch-up protected to 100mA from -1V to Vcc +1V * Low Vcc write inhibit is from 1.5V to 2.5V PERFORMANCE * High Performance - Fast access time: 70MHz serial clock (15pF + 1TTL Load) and 66MHz serial clock (30pF + 1TTL Load) - Fast program time: 1.4ms(typ.) and 5ms(max.)/page (256-byte per page) - Fast erase time: 90ms(typ.) and 270ms(max.)/sector (4K-byte per sector) ; 1s(typ.) and 3s(max.)/block (64Kbyte per block) * Low Power Consumption - Low active read current: 12mA(max.) at 70MHz, 8mA(max.) at 66MHz and 4mA(max.) at 33MHz - Low active programming current: 30mA (max.) - Low active erase current: 15mA (max.) - Low standby current: 50uA (max.) - Deep power-down mode 10uA (typical) * Minimum 100,000 erase/program cycles SOFTWARE FEATURES * Input Data Format - 1-byte Command code * Block Lock protection - The BP0~BP2 status bit defines the size of the area to be software protected against Program and Erase instructions. * Auto Erase and Auto Program Algorithm
- Automatically erases and verifies data at selected
sector - Automatically programs and verifies data at selected page by an internal algorithm that automatically times the program pulse widths (Any page to be programed should have page in the erased state first) * Status Register Feature * Electronic Identification - JEDEC 2-byte Device ID - RES command, 1-byte Device ID HARDWARE FEATURES * SCLK Input - Serial clock input * SI Input - Serial Data Input * SO Output - Serial Data Output * WP# pin - Hardware write protection * HOLD# pin - pause the chip without diselecting the chip * PACKAGE - 16-pin SOP (300mil) - 8-land SON (8x6mm) - 8-pin SOP (200mil)
P/N: PM1211
REV. 0.01, JUL. 29, 2005
1
www.DataSheet.in
MX25L1605A
GENERAL DESCRIPTION
The MX25L1605A is a CMOS 16,777,216 bit serial Flash memory, which is configured as 2,097,152 x 8 internally. The MX25L1605A features a serial peripheral interface and software protocol allowing operation on a simple 3-wire bus. The three bus signals are a clock input (SCLK), a serial data input (SI), and a serial data output (SO). SPI access to the device is enabled by CS# input. The MX25L1605A provides sequential read operation on whole chip. After program/erase command is issued, auto program/ erase algorithms which program/ erase and verify the specified page or sector/block locations will be executed. Program command is executed on page (256 bytes) basis, and erase command is executes on chip or sector(4Kbytes) or block(64K-bytes). To provide user with ease of interface, a status register is included to indicate the status of the chip. The status read command can be issued to detect completion status of a program or erase operation via WIP bit. When the device is not in operation and CS# is high, it is put in standby mode and draws less than 50uA DC current. The MX25L1605A utilizes MXIC's proprietary memory cell, which reliably stores memory contents even after 100,000 program and erase cycles.
PIN CONFIGURATIONS
16-PIN SOP (300mil)
HOLD# VCC NC NC NC NC CS# SO 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 SCLK SI NC NC NC NC GND WP#
PIN DESCRIPTION
SYMBOL CS# SI SO SCLK HOLD# VCC GND
8 7 6 5 VCC HOLD# SCLK SI
8-LAND SON (8x6mm)
CS# SO WP# GND 1 2 3 4
DESCRIPTION Chip Select Serial Data Input Serial Data Output Clock Input Hold, to pause the device without deselecting the device + 3.3V Power Supply Ground
8-PIN SOP (200mil)
VCC HOLD# SCLK SI
P/N: PM1211
CS# SO WP# GND
1 2 3 4
8 7 6 5
2
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
BLOCK DIAGRAM
Address Generator
X-Decoder
Memory Array
Page Buffer Data Register Y-Decoder SRAM Buffer Sense Amplifier
HV Generator
SI
CS#
Mode Logic
State Machine
Output Buffer
SO SCLK Clock Generator
P/N: PM1211
3
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
DATA PROTECTION
The MX25L1605A is designed to offer protection against accidental erasure or programming caused by spurious system level signals that may exist during power transition. During power up the device automatically resets the state machine in the Read mode. In addition, with its control register architecture, alteration of the memory contents only occurs after successful completion of specific command sequences. The device also incorporates several features to prevent inadvertent write cycles resulting from VCC power-up and power-down transition or system noise. * Power-On Reset and an internal timer (tPUW) can provide protection against inadvertant changes while the power supply is outside the operating specification. * Program, Erase and Write Status Register instructions are checked that they consist of a number of clock pulses that is a multiple of eight, before they are accepted for execution. * To avoid unexpected changes by system power supply transition, the Power-On Reset and an internal timer (tPUW) can protect the device. * Before the Program, Erase, and Write Status Register execution, instruction length will be checked on following the clock pulse number to be multiple of eight base. * Write Enable (WREN) instruction must set to Write Enable Latch (WEL) bit before writing other instructions to modify data. The WEL bit will return to reset state by following situations: - Power-up - Write Disable (WRDI) instruction completion - Write Status Register (WRSR) instruction completion - Page Program (PP) instruction completion - Sector Erase (SE) instruction completion - Block Erase (BE) instruction completion - Chip Erase (CE) instruction completion * The Software Protected Mode (SPM) use (BP2, BP1, BP0) bits to allow part of memory to be protected as read only. * The Hardware Protected Mode (HPM) use WP# to protect the (BP2, BP1, BP0) bits and SRWD bit. * Deep-Power Down Mode also protects the device by ignoring all instructions except Release from DeepPower Down (RDP) instruction and RES instruction.
* All instructions that modify data must be preceded by a Write Enable (WREN) instruction to set the Write Enable Latch (WEL) bit . This bit is returned to its reset state by the following events: - Power-up - Write Disable (WRDI) instruction completion - Write Status Register (WRSR) instruction completion - Page Program (PP) instruction completion - Sector Erase (SE) instruction completion - Block Erase (BE) instruction completion - Chip Erase (CE) instruction completion * The Block Protect (BP2, BP1, BP0) bits allow part of the memory to be configured as readonly. This is the Software Protected Mode (SPM). The Write Protect (WP#) signal allows the Block Protect (BP2, BP1, BP0) bits and Status Register Write Disable (SRWD) bit to be protected. This is the Hardware Protected Mode (HPM). In addition to the low power consumption feature, the Deep Power-down mode offers extra software protection from inadvertent Write, Program and Erase instructions, as all instructions are ignored except one particular instruction (the Release from Deep Powerdown instruction).
*
*
P/N: PM1211
4
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
Table 1. Protected Area Sizes
Status bit BP2 0 0 0 0 1 1 1 1 BP1 0 0 1 1 0 0 1 1 BP0 0 1 0 1 0 1 0 1 0 (none) 1 (1 block) 2 (2 blocks) 3 (4 blocks) 4 (8 blocks) 5 (16 blocks) 6 (All) 7 (All) None Upper 32nd (Block 31) Upper sixteenth (two blocks: 30 and 31) Upper eighth (four blocks: 28 to 31) Upper quarter (eight blocks: 24 to 31) Upper half (sixteen blocks: 16 to 31) All All Protection Area MX25L1605A
P/N: PM1211
5
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
HOLD FEATURE
HOLD# pin signal goes low to hold any serial communications with the device. The HOLD feature will not stop the operation of write status register, programming, or erasing in progress. The operation of HOLD requires Chip Select(CS#) keeping low and starts on falling edge of HOLD# pin signal while Serial Clock (SCLK) signal is being low (if Serial Clock signal is not being low, HOLD operation will not start until Serial Clock signal being low). The HOLD condition ends on the rising edge of HOLD# pin signal while Serial Clock(SCLK) signal is being low( if Serial Clock signal is not being low, HOLD operation will not end until Serial Clock being low), see Figure 1.
Figure 1. Hold Condition Operation
SCLK
HOLD#
Hold Condition (standard use)
Hold Condition (non-standard use)
The Serial Data Output (SO) is high impedance, both Serial Data Input (SI) and Serial Clock (SCLK) are don't care during the HOLD operation. If Chip Select (CS#) signal goes high during HOLD operation, it has the effect on resetting the internal logic of the device. It is necessary to drive HOLD# signal to high, and then to drive CS# to low for restarting communication with the device.
P/N: PM1211
6
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
Table 2. COMMAND DEFINITION
COMMAND WREN (byte) (write Enable) 1st 06 Hex 2nd 3rd 4th 5th Action sets the (WEL) write enable latch bit COMMAND SE (byte) (Sector Erase) 1st 2nd 3rd 4th 5th Action 20 Hex AD1 AD2 AD3 WRDI (write disable) 04 Hex RDID (read identification) 9F Hex RDSR (read status register) 05 Hex WRSR (write status register) 01 Hex READ (read data) 03 Hex AD1 AD2 AD3 Fast Read (fast read data) 0B Hex AD1 AD2 AD3 x
reset the (WEL) write enable latch bit BE (Block Erase) D8 Hex AD1 AD2 AD3
output the to read out manufacturer the status ID and 2-byte register device ID
to write new n bytes values to the read out status register until CS# goes high RDP (Release from Deep Power-down) AB Hex RES (Read Electronic ID) AB Hex x x x REMS (Read Electronic Manufacturer & Device ID) 90 Hex x x ADD(1) Output the manufacturer ID and device ID
CE (Chip Erase) 60 or C7 Hex
PP (Page Program) 02 Hex AD1 AD2 AD3
DP (Deep Power Down) B9 Hex
(1) ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first
P/N: PM1211
7
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
Table 3. Memory Organization
Bolck 31 496 495 Sector 511 Address Range 1FF000h 1FFFFFh
Bolck 14
Sector 239
Address Range 0EF000h 0EFFFFh
...
...
...
...
...
1F0000h 1EF000h
1F0FFFh 1EFFFFh
224 223
0E0000h 0DF000h
0E0FFFh 0DFFFFh 0D0FFFh 0CFFFFh 0C0FFFh 0BFFFFh 0B0FFFh 0AFFFFh 0A0FFFh 09FFFFh 090FFFh 08FFFFh 080FFFh 07FFFFh 070FFFh 06FFFFh
...
...
...
...
13 208 207
480 479
1E0000h 1DF000h
1E0FFFh 1DFFFFh
...
...
...
...
12 192 191
464 463
1D0000h 1CF000h
1D0FFFh 1CFFFFh
...
...
...
...
448 447
1C0000h 1BF000h
1C0FFFh 1BFFFFh
11 176 175
...
...
...
...
432 431
1B0000h 1AF000h
1B0FFFh 1AFFFFh
10 160 159
...
...
...
...
416 415
1A0000h 19F000h
1A0FFFh 19FFFFh
9 144 143
...
...
25 400 399
...
090000h 08F000h
...
...
190000h 18F000h
190FFFh 18FFFFh
8 128 127
...
...
24 384 383
...
080000h 07F000h
...
...
180000h 17F000h
180FFFh 17FFFFh
7 112 111 6 96 95 5 80 79
...
...
......
368 367
170000h 16F000h
170FFFh 16FFFFh
22 352 351
......
160000h 15F000h
160FFFh 15FFFFh 150FFFh 14FFFFh
21 336 335
150000h 14F000h
050000h 04F000h
050FFFh 04FFFFh 040FFFh 03FFFFh 030FFFh 02FFFFh 020FFFh 01FFFFh 010FFFh 00FFFFh 004FFFh 003FFFh 002FFFh 001FFFh 000FFFh
REV. 0.01, JUL. 29, 2005
...
...
...
...
...
4 64 63
...
...
...
20 320 319
...
...
3 48 47
...
...
19 304 303
...
...
...
2 32 31
...
...
18 288 287
...
...
...
1 16 15
...
...
17 272 271
...
...
...
...
...
16 256 255
...
100000h 0FF000h
100FFFh 0FFFFFh 0F0FFFh
0
15 240
P/N: PM1211
0F0000h
4 3 2 1 0
004000h 003000h 002000h 001000h 000000h
...
...
...
8
www.DataSheet.in
...
110000h 10F000h
110FFFh 10FFFFh
010000h 00F000h
...
120000h 11F000h
120FFFh 11FFFFh
020000h 01F000h
...
130000h 12F000h
130FFFh 12FFFFh
030000h 02F000h
...
140000h 13F000h
140FFFh 13FFFFh
040000h 03F000h
...
......
......
060000h 05F000h
060FFFh 05FFFFh
...
...
...
......
......
23
...
070000h 06F000h
...
...
...
26
...
0A0000h 09F000h
...
27
...
0B0000h 0AF000h
...
28
...
0C0000h 0BF000h
...
29
...
0D0000h 0CF000h
...
30
...
...
MX25L1605A
DEVICE OPERATION
1. Before a command is issued, status register should be checked to ensure device is ready for the intended operation. 2. When incorrect command is inputted to this LSI, this LSI becomes standby mode and keeps the standby mode until next CS# falling edge. In standby mode, SO pin of this LSI should be High-Z. 3. When correct command is inputted to this LSI, this LSI becomes active mode and keeps the active mode until next CS# rising edge. 4. Input data is latched on the rising edge of Serial Clock(SCLK) and data shifts out on the falling edge of SCLK. The difference of SPI mode 0 and mode 3 is shown as Figure 2. Figure 2. SPI Modes Supported
CPOL
CPHA SCLK
(SPI mode 0)
0
0
(SPI mode 3)
1
1
SCLK
SI
MSB
SO
MSB
5. For the following instructions: RDID, RDSR, READ, FAST_READ, RES and REMS the shifted-in instruction sequence is followed by a data-out sequence. After any bit of data being shifted out, the CS# can be high. For the following instructions: WREN, WRDI, WRSR, SE, BE, CE, PP, RDP and DP the CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed. 6. During the progress of Write Status Register, Program, Erase operation, to access the memory array is neglected and not affect the current operation of Write Status Register, Program, Erase.
P/N: PM1211
9
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
COMMAND DESCRIPTION (1) Write Enable (WREN)
The Write Enable (WREN) instruction is for setting Write Enable Latch (WEL) bit. For those instructions like PP, SE, BE, CE, and WRSR, which are intended to change the device content, should be set every time after the WREN instruction setting the WEL bit. The sequence of issuing WREN instruction is: CS# goes low-> sending WREN instruction code-> CS# goes high. (see Figure 11)
(2) Write Disable (WRDI)
The Write Disable (WRDI) instruction is for resetting Write Enable Latch (WEL) bit. The sequence of issuing WRDI instruction is: CS# goes low-> sending WRDI instruction code-> CS# goes high. (see Figure 12) The WEL bit is reset by following situations: - Power-up - Write Disable (WRDI) instruction completion - Write Status Register (WRSR) instruction completion - Page Program (PP) instruction completion - Sector Erase (SE) instruction completion - Block Erase (BE) instruction completion - Chip Erase (CE) instruction completion
(3) Read Identification (RDID)
The RDID instruction is for reading the manufacturer ID of 1-byte and followed by Device ID of 2-byte. The MXIC Manufacturer ID is C2(hex), the memory type ID is 20(hex) as the first-byte device ID, and the individual device ID of second-byte ID is: 15(hex). The sequence of issuing RDID instruction is: CS# goes low-> sending RDID instruction code -> 24-bits ID data out on SO -> to end RDID operation can use CS# to high at any time during data out. (see Figure. 13) While Program/Erase operation is in progress, it will not decode the RDID instruction, so there's no effect on the cycle of program/erase operation which is currently in progress. When CS# goes high, the device is at standby stage.
P/N: PM1211
10
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
(4) Read Status Register (RDSR)
The RDSR instruction is for reading Status Register Bits. The Read Status Register can be read at any time (even in program/erase/write status register condition) and continuously. It is recommended to check the Write in Progress (WIP) bit before sending a new instruction when a program, erase, or write status register operation is in progress. The sequence of issuing RDSR instruction is: CS# goes low-> sending RDSR instruction code-> Status Register data out on SO (see Figure. 14) The definition of the status register bits is as below: WIP bit. The Write in Progress (WIP) bit, a volatile bit, indicates whether the device is busy in program/erase/write status register progress. When WIP bit sets to 1, which means the device is busy in program/erase/write status register progress. When WIP bit sets to 0, which means the device is not in progress of program/erase/write status register cycle. WEL bit. The Write Enable Latch (WEL) bit, a volatile bit, indicates whether the device is set to internal write enable latch. When WEL bit sets to 1, which means the internal write enable latch is set, the device can accept program/erase/write status register instruction. When WEL bit sets to 0, which means no internal write enable latch; the device will not accept program/erase/write status register instruction. BP2, BP1, BP0 bits. The Block Protect (BP2, BP1, BP0) bits, non-volatile bits, indicate the protected area(as defined in table 1) of the device to against the program/erase instruction without hardware protection mode being set. To write the Block Protect (BP2, BP1, BP0) bits requires the Write Status Register (WRSR) instruction to be executed. Those bits define the protected area of the memory to against Page Program (PP), Sector Erase (SE), Block Erase (BE) and Chip Erase(CE) instructions (only if all Block Protect bits set to 0, the CE instruction can be executed)
SRWD bit. The Status Register Write Disable (SRWD) bit, non-volatile bit, is operated together with Write Protection (WP#) pin for providing hardware protection mode. The hardware protection mode requires SRWD sets to 1 and WP# pin signal is low stage. In the hardware protection mode, the Write Status Register (WRSR) instruction is no longer accepted for execution and the SRWD bit and Block Protect bits (BP2, BP1, BP0) are read only.
bit 7 SRWD Status Register Write Protect 1= status register write disable
bit 6 0
bit 5 0
bit 4 bit 3 bit 2 BP2 BP1 BP0 the level of the level of the level of protected protected protected block block block (note 1) (note 1) (note 1)
bit 1 WEL (write enable latch)
bit 0 WIP (write in progress bit)
1=write enable 1=write operation 0=not write 0=not in write enable operation
Note: 1. see the table "Protected Area Sizes"
P/N: PM1211
11
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
(5) Write Status Register (WRSR)
The WRSR instruction is for changing the values of Status Register Bits. Before sending WRSR instruction, the Write Enable (WREN) instruction must be decoded and executed to set the Write Enable Latch (WEL) bit in advance. The WRSR instruction can change the value of Block Protect (BP2, BP1, BP0) bits to define the protected area of memory (as shown in table 1). The WRSR also can set or reset the Status Register Write Disable (SRWD) bit in accordance with Write Protection (WP#) pin signal. The WRSR instruction cannot be executed once the Hardware Protected Mode (HPM) is entered. The sequence of issuing WRSR instruction is: CS# goes low-> sending WRSR instruction code-> Status Register data on SI-> CS# goes high. (see Figure 15) The WRSR instruction has no effect on b6, b5, b1, b0 of the status register. The CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed. The selftimed Write Status Register cycle time (tW) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Write Status Register cycle is in progress. The WIP sets 1 during the tW timing, and sets 0 when Write Status Register Cycle is completed, and the Write Enable Latch (WEL) bit is reset.
Table 4. Protection Modes
WP# Signal 1 0 SRWD Bit 0 0 Software Protected (SPM) Mode Write Protection of the Status Register Status Register is Writable (if the WREN instruction has set the WEL bit) The values in the SRWD, BP2, BP1 and BP0 bits can be changed Status Register is Hardware write protected The values in the SRWD, BP2, BP1 and BP0 bits cannot be changed Memory Content Protected Area1 Unprotected Area1
Protected against Page Program, Sector Erase and Chip Erase
Ready to accept Page Program and Sector Erase instructions
1
1
0
1
Hardware Protected (HPM)
Protected against Page Program, Sector Erase and Chip Erase
Ready to accept Page Program and Sector Erase instructions
Note: 1. As defined by the values in the Block Protect (BP2, BP1, BP0) bits of the Status Register, as shown in Table 1.
As the above table showing, the summary of the Software Protected Mode (SPM) and Hardware Protected Mode (HPM). Software Protected Mode (SPM): - When SRWD bit=0, no matter WP# is low or high, the WREN instruction may set the WEL bit and can change the values of SRWD, BP2, BP1, BP0. The protected area, which is defined by BP2, BP1, BP0, is at software protected mode (SPM). - When SRWD bit=1 and WP# is high, the WREN instruction may set the WEL bit can change the values of SRWD, BP2, BP1, BP0. The protected area, which is defined by BP2, BP1, BP0, is at software protected mode (SPM)
P/N: PM1211
12
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
Note: If SRWD bit=1 but WP# is low, it is impossible to write the Status Register even if the WEL bit has previously been set. It is rejected to write the Status Register and not be executed. Hardware Protected Mode (HPM): - When SRWD bit=1, and then WP# is low (or WP# is low before SRWD bit=1), it enters the hardware protected mode (HPM). The data of the protected area is protected by software protected mode by BP2, BP1, BP0 and hardware protected mode by the WP# to against data modification. Note: to exit the hardware protected mode requires WP# driving high once the hardware protected mode is entered. If the WP# pin is permanently connected to high, the hardware protected mode can never be entered; only can use software protected mode via BP2, BP1, BP0.
(6) Read Data Bytes (READ)
The read instruction is for reading data out. The address is latched on rising edge of SCLK, and data shifts out on the falling edge of SCLK at a maximum frequency fC. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single READ instruction. The address counter rolls over to 0 when the highest address has been reached. The sequence of issuing READ instruction is: CS# goes low-> sending READ instruction code-> 3-byte address on SI -> data out on SO-> to end READ operation can use CS# to high at any time during data out. (see Figure. 16)
(7) Read Data Bytes at Higher Speed (FAST_READ)
The FAST_READ instruction is for quickly reading data out. The address is latched on rising edge of SCLK, and data of each bit shifts out on the falling edge of SCLK at a maximum frequency fR. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single FAST_READ instruction. The address counter rolls over to 0 when the highest address has been reached. The sequence of issuing FAST_READ instruction is: CS# goes low-> sending FAST_READ instruction code-> 3-byte address on SI-> 1-dummy byte address on SI->data out on SO-> to end FAST_READ operation can use CS# to high at any time during data out. (see Figure. 17) While Program/Erase/Write Status Register cycle is in progress, FAST_READ instruction is rejected without any impact on the Program/Erase/Write Status Register current cycle.
(8) Sector Erase (SE)
The Sector Erase (SE) instruction is for erasing the data of the chosen sector to be "1". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Sector Erase (SE). Any address of the sector (see table 3) is a valid address for Sector Erase (SE) instruction. The CS# must go high exactly at the byte boundary (the latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed. Address bits [Am-A12] (Am is the most significant address) select the sector address. The sequence of issuing SE instruction is: CS# goes low -> sending SE instruction code-> 3-byte address on SI -> CS# goes high. (see Figure 19)
P/N: PM1211
13
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
The self-timed Sector Erase Cycle time (tSE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Sector Erase cycle is in progress. The WIP sets 1 during the tSE timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the page is protected by BP2, BP1, BP0 bits, the Sector Erase (SE) instruction will not be executed on the page.
(9) Block Erase (BE)
The Block Erase (BE) instruction is for erasing the data of the chosen block to be "1". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Block Erase (BE). Any address of the block (see table 3) is a valid address for Block Erase (BE) instruction. The CS# must go high exactly at the byte boundary (the latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed. The sequence of issuing BE instruction is: CS# goes low -> sending BE instruction code-> 3-byte address on SI -> CS# goes high. (see Figure 20) The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Sector Erase cycle is in progress. The WIP sets 1 during the tBE timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the page is protected by BP2, BP1, BP0 bits, the Block Erase (BE) instruction will not be executed on the page.
(10) Chip Erase (CE)
The Chip Erase (CE) instruction is for erasing the data of the whole chip to be "1". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Chip Erase (CE). Any address of the sector (see table 3) is a valid address for Chip Erase (CE) instruction. The CS# must go high exactly at the byte boundary( the latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed. The sequence of issuing CE instruction is: CS# goes low-> sending CE instruction code-> CS# goes high. (see Figure 20) The self-timed Chip Erase Cycle time (tCE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Chip Erase cycle is in progress. The WIP sets 1 during the tCE timing, and sets 0 when Chip Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the chip is protected by BP2, BP1, BP0 bits, the Chip Erase (CE) instruction will not be executed. It will be only executed when BP2, BP1, BP0 all set to "0".
(11) Page Program (PP)
The Page Program (PP) instruction is for programming the memory to be "0". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Page Program (PP). If the eight least significant address bits (A7-A0) are not all 0, all transmitted data which goes beyond the end of the current page are programmed from the start address if the same page (from the address whose 8 least significant address bits (A7-A0) are all 0). The CS# must keep during the whole Page Program cycle. The CS# must go high exactly at the byte boundary( the latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed. If more than 256 bytes are sent to the device, the data of the last 256-byte is programmed at the request page and previous data will be disregarded. If less than 256 bytes are sent to the device, the data is programmed at the request address of the page without effect on other address of the same page. The sequence of issuing PP instruction is: CS# goes low-> sending PP instruction code-> 3-byte address on SI-> at least 1-byte on data on SI-> CS# goes high. (see Figure 18)
P/N: PM1211
14
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
The self-timed Page Program Cycle time (tPP) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Page Program cycle is in progress. The WIP sets 1 during the tPP timing, and sets 0 when Page Program Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the page is protected by BP2, BP1, BP0 bits, the Page Program (PP) instruction will not be executed.
(12) Deep Power-down (DP)
The Deep Power-down (DP) instruction is for setting the device on the minimizing the power consumption (to entering the Deep Power-down mode), the standby current is reduced from ISB1 to ISB2). The Deep Power-down mode requires the Deep Power-down (DP) instruction to enter, during the Deep Power-down mode, the device is not active and all Write/ Program/Erase instruction are ignored. When CS# goes high, it's only in standby mode not deep power-down mode. It's different from Standby mode. The sequence of issuing DP instruction is: CS# goes low-> sending DP instruction code-> CS# goes high. (see Figure 22) Once the DP instruction is set, all instruction will be ignored except the Release from Deep Power-down mode (RDP) and Read Electronic Signature (RES) instruction. (RES instruction to allow the ID been read out). When Power-down, the deep power-down mode automatically stops, and when power-up, the device automatically is in standby mode. For RDP instruction the CS# must go high exactly at the byte boundary (the latest eighth bit of instruction code been latched-in); otherwise, the instruction will not executed. As soon as Chip Select (CS#) goes high, a delay of tDP is required before entering the Deep Power-down mode and reducing the current to ISB2.
(13) Release from Deep Power-down (RDP), Read Electronic Signature (RES)
The Release from Deep Power-down (RDP) instruction is terminated by driving Chip Select (CS#) High. When Chip Select (CS#) is driven High, the device is put in the Stand-by Power mode. If the device was not previously in the Deep Powerdown mode, the transition to the Stand-by Power mode is immediate. If the device was previously in the Deep Power-down mode, though, the transition to the Stand-by Power mode is delayed by tRES2, and Chip Select (CS#) must remain High for at least tRES2(max), as specified in Table 6. Once in the Stand-by Power mode, the device waits to be selected, so that it can receive, decode and execute instructions. RES instruction is for reading out the old style of 8-bit Electronic Signature, whose values are shown as table of ID Definitions. This is not the same as RDID instruction. It is not recommended to use for new design. For new deisng, please use RDID instruction. Even in Deep power-down mode, the RDP and RES are also allowed to be executed, only except the device is in progress of program/erase/write cycle; there's no effect on the current program/erase/write cycle in progress. The sequence is shown as Figure 23,24. The RES instruction is ended by CS# goes high after the ID been read out at least once. The ID outputs repeatedly if continuously send the additional clock cycles on SCLK while CS# is at low. If the device was not previously in Deep Powerdown mode, the device transition to standby mode is immediate. If the device was previously in Deep Power-down mode, there's a delay of tRES2 to transit to standby mode, and CS# must remain to high at least tRES2(max). Once in the standby mode, the device waits to be selected, so it can be receive, decode, and execute instruction. The RDP instruction is for releasing from Deep Power Down Mode.
P/N: PM1211
15
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
(14) Read Electronic Manufacturer ID & Device ID (REMS)
The REMS instruction is an alternative to the Release from Power-down/Device ID instruction that provides both the JEDEC assigned manufacturer ID and the specific device ID. The REMS instruction is very similar to the Release from Power-down/Device ID instruction. The instruction is initiated by driving the CS# pin low and shift the instruction code "90h" followed by two dummy bytes and one bytes address (A7~A0). After which, the Manufacturer ID for MXIC (C2h) and the Device ID are shifted out on the falling edge of SCLK with most significant bit (MSB) first as shown in figure 25. The Device ID values are listed in Table of ID Definitions on page 16. If the one-byte address is initially set to 01h, then the device ID will be read first and then followed by the Manufacturer ID. The Manufacturer and Device IDs can be read continuously, alternating from one to the other. The instruction is completed by driving CS# high.
Table of ID Definitions: RDID RES REMS manufacturer ID C2 manufacturer ID C2 memory type 20 electronic ID 14 device ID 14 memory density 15
P/N: PM1211
16
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
POWER-ON STATE
At Power-up and Power-down, the device must not be selected (that is Chip Select (CS#) must follow the voltage applied on VCC) until VCC reaches the correct value: - VCC(min) at Power-up, and then for a further delay of tVSL - VSS at Power-down Usually a simple pull-up resistor on Chip Select (CS#) can be used to insure safe and proper Power-up and Power-down. To avoid data corruption and inadvertent write operations during power up, a Power On Reset (POR) circuit is included. The logic inside the device is held reset while VCC is less than the POR threshold value, VWI --all operations are disabled, and the device does not respond to any instruction. Moreover, the device ignores all Write Enable (WREN), Page Program (PP), Sector Erase (SE), Block Erase (BE), Chip Erase (CE) and Write Status Register (WRSR) instructions until a time delay of tPUW has elapsed after the moment that VCC rises above the VWI threshold. However, the correct operation of the device is not guaranteed if, by this time, VCC is still below VCC(min). No Write Status Register, Program or Erase instructions should be sent until the later of: - tPUW after VCC passed the VWI threshold - tVSL after VCC passed the VCC(min) level These values are specified in Table 7. If the delay, tVSL, has elapsed, after VCC has risen above VCC(min), the device can be selected for READ instructions even if the tPUW delay is not yet fully elapsed. At Power-up, the device is in the following state: - The device is in the Standby mode (not the Deep Power-down mode). - The Write Enable Latch (WEL) bit is reset. Normal precautions must be taken for supply rail decoupling, to stabilize the VCC feed. Each device in a system should have the VCC rail decoupled by a suitable capacitor close to the package pins. (Generally, this capacitor is of the order of 0.1uF). At Power-down, when VCC drops from the operating voltage, to below the POR threshold value, VWI, all operations are disabled and the device does not respond to any instruction. (The designer needs to be aware that if a Power-down occurs while a Write, Program or Erase cycle is in progress, some data corruption can result.)
P/N: PM1211
17
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
ELECTRICAL SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS RATING VALUE Industrial grade 0 C to 70 C for Commercial grade Storage Temperature Applied Input Voltage Applied Output Voltage VCC to Ground Potential -55 C to 125 C -0.5V to 4.6V -0.5V to 4.6V -0.5V to 4.6V NOTICE: 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is stress rating only and functional operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability. 2. Specifications contained within the following tables are subject to change. 3. During voltage transitions, all pins may overshoot to 4.6V or -0.5V for period up to 20ns. 4. All input and output pins may overshoot to VCC+0.5V while VCC+0.5V is smaller than or equal to 4.6V.
Ambient Operating Temperature -40 C to 85 C for
Figure 3.Maximum Negative Overshoot Waveform
Figure 4. Maximum Positive Overshoot Waveform
20ns
0V -0.5V
4.6V 3.6V
20ns
CAPACITANCE TA = 25 C, f = 1.0 MHz
SYMBOL CIN COUT PARAMETER Input Capacitance Output Capacitance MIN. TYP MAX. 6 8 UNIT pF pF CONDITIONS VIN = 0V VOUT = 0V
P/N: PM1211
18
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
Figure 5. INPUT TEST WAVEFORMS AND MEASUREMENT LEVEL
Input timing referance level 0.8VCC 0.7VCC 0.3VCC 0.2VCC AC Measurement Level Output timing referance level
0.5VCC
Note: Input pulse rise and fall time are <5ns
Figure 6. OUTPUT LOADING
DEVICE UNDER TEST
2.7K ohm +3.3V
CL
6.2K ohm
DIODES=IN3064 OR EQUIVALENT
CL=30pF Including jig capacitance (CL=15pF Including jig capacitance for 70MHz)
P/N: PM1211
19
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
Table 5. DC CHARACTERISTICS (Temperature = -40 C to 85 C for Industrial grade, Temperature = 0 C to 70 C for Commercial grade, VCC = 2.7V ~ 3.6V)
SYMBOL PARAMETER ILI ILO ISB1 ISB2 ICC1 Input Load Current Output Leakage Current VCC Standby Current Deep Power-down Current VCC Read 1 12 8 4 ICC2 ICC3 VCC Program Current (PP) VCC Write Status Register (WRSR) Current ICC4 ICC5 VIL VIH VOL VOH VCC Sector Erase Current (SE) VCC Chip Erase Current (CE) Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage VCC-0.2 -0.5 0.7VCC 0.3VCC VCC+0.4 0.4 V V V V IOL = 1.6mA IOH = -100uA 1 15 mA 1 15 mA Erase in Progress CS#=VCC Erase in Progress CS#=VCC 15 mA 1 15 mA mA mA mA 10 uA 1 50 uA 1 2 uA NOTES 1 MIN. TYP MAX. UNITS 2 uA TEST CONDITIONS VCC = VCC Max VIN = VCC or GND VCC = VCC Max VIN = VCC or GND VIN = VCC or GND CS# = VCC VIN = VCC or GND CS# = VCC f=70MHz SCLK=0.1VCC/0.9VCC, SO=Open f=66MHz SCLK=0.1VCC/0.9VCC, SO=Open f=33MHz SCLK=0.1VCC/0.9VCC, SO=Open Program in Progress CS# = VCC Program status register in progress CS#=VCC
Notes : 1. Typical values at VCC = 3.3V, T = 25 C. These currents are valid for all product versions (package and speeds). 2. Typical value is calculated by simulation.
P/N: PM1211
20
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
Table 6. AC CHARACTERISTICS (Temperature = -40 C to 85 C for Industrial grade, Temperature = 0 C to 70 C for Commercial grade, VCC = 2.7V ~ 3.6V)
Symbol fSCLK Alt. fC Parameter Clock Frequency for the following instructions: FAST_READ, PP, SE, BE, CE, DP, RES,RDP WREN, WRDI, RDID, RDSR, WRSR Min. D.C. Typ. Max. Unit 70 MHz (Condition:15pF) 66 MHz (Condition:30pF) 33 MHz ns ns V/ns V/ns ns ns ns ns ns ns ns 6 ns 8 ns 6 ns ns ns ns ns ns 6 ns 6 ns ns ns 3 us 3 us 1.8 us 5 15 ms 1.4 5 ms 90 270 ms 1 3 s 32 64 s
fRSCLK tCH(1) tCL(1) tCLCH(2) tCHCL(2) tSLCH tCHSL tDVCH tCHDX tCHSH tSHCH tSHSL tSHQZ(2) tCLQV tCLQX tHLCH tCHHH tHHCH tCHHL tHHQX(2) tHLQZ(2) tWHSL(4) tSHWL(4) tDP(2) tRES1(2) tRES2(2) tW tPP tSE tBE tCE
fR Clock Frequency for READ instructions D.C. tCLH Clock High Time 7 tCLL Clock Low Time 7 Clock Rise Time (3) (peak to peak) 0.1 Clock Fall Time (3) (peak to peak) 0.1 tCSS CS# Active Setup Time (relative to SCLK) 5 CS# Not Active Hold Time (relative to SCLK) 5 tDSU Data In Setup Time 2 tDH Data In Hold Time 5 CS# Active Hold Time (relative to SCLK) 5 CS# Not Active Setup Time (relative to SCLK) 5 tCSH CS# Deselect Time 100 tDIS Output Disable Time tV Clock Low to Output Valid @33MHz 30pF @70MHz 15pF or @66MHz 30pF tHO Output Hold Time 0 HOLD# Setup Time (relative to SCLK) 5 HOLD# Hold Time (relative to SCLK) 5 HOLD Setup Time (relative to SCLK) 5 HOLD Hold Time (relative to SCLK) 5 tLZ HOLD to Output Low-Z tHZ HOLD# to Output High-Z Write Protect Setup Time 20 Write Protect Hold Time 100 CS# High to Deep Power-down Mode CS# High to Standby Mode without Electronic Signature Read CS# High to Standby Mode with Electronic Signature Read Write Status Register Cycle Time Page Program Cycle Time Sector Erase Cycle Time Block Erase Cycle Time Chip Erase Cycle Time
Notes: 1. tCH + tCL must be greater than or equal to 1/ fC 2. Value guaranteed by characterization, not 100% tested in production. 3. Expressed as a slew-rate. 4. Only applicable as a constraint for a WRSR instruction when SRWD is set at 1. 5. Test condition is shown as Figure 3.
P/N: PM1211
21
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
Table 7. Power-Up Timing and VWI Threshold
Symbol tVSL(1) tPUW(1) VWI(1) Parameter VCC(min) to CS# low Time delay to Write instruction Write Inhibit Voltage Min. 30 1 1.5 Max. 10 2.5 Unit us ms V
Note: 1. These parameters are characterized only.
INITIAL DELIVERY STATE
The device is delivered with the memory array erased: all bits are set to 1 (each byte contains FFh). The Status Register contains 00h (all Status Register bits are 0).
P/N: PM1211
22
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
Figure 7. Serial Input Timing
tSHSL CS# tCHSL SCLK tDVCH tCHDX SI MSB IN tCLCH LSB IN tCHCL tSLCH tCHSH tSHCH
SO
High Impedance
Figure 8. Write Protect Setup and Hold Timing during WRSR when SRWD=1
WP# tWHSL tSHWL
CS#
SCLK
SI High Impedance SO
P/N: PM1211
23
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
Figure 9. Hold Timing
CS# tHLCH tCHHL SCLK tCHHH tHLQZ SO tHHQX tHHCH
SI
HOLD#
Figure 10. Output Timing
CS# tCH SCLK tCLQV tCLQX SO tQLQH tQHQL SI ADDR.LSB IN tCLQX LSB OUT tCLQV tCL tSHQZ
P/N: PM1211
24
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
Figure 11. Write Enable (WREN) Instruction Sequence
CS# 0 SCLK Instruction SI 1 2 3 4 5 6 7
High Impedance SO
Figure 12. Write Disable (WRDI) Instruction Sequence
CS# 0 SCLK Instruction SI 1 2 3 4 5 6 7
High Impedance SO
Figure 13. Read Identification (RDID) Instruction Sequence and Data-Out Sequence
CS# 0 SCLK Instruction SI Manufacturer Identification High Impedance SO 7 MSB 6 5 3 2 1 0 15 14 13 MSB 3 2 1 0 Device Identification 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 28 29 30 31
P/N: PM1211
25
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
Figure 14. Read Status Register (RDSR) Instruction Sequence and Data-Out Sequence
CS# 0 SCLK Instruction SI Status Register Out High Impedance SO 7 MSB 6 5 4 3 2 1 0 7 MSB 6 5 4 3 2 1 0 7 Status Register Out 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Figure 15. Write Status Register (WRSR) Instruction Sequence
CS# 0 SCLK Instruction Status Register In 7 High Impedance SO MSB 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SI
Figure 16. Read Data Bytes (READ) Instruction Sequence and Data-Out Sequence
CS# 0 SCLK Instruction 24-Bit Address 1 2 3 4 5 6 7 8 9 10 28 29 30 31 32 33 34 35 36 37 38 39
SI High Impedance SO
23 22 21 MSB
3
2
1
0 Data Out 1 7 6 5 4 3 2 1 0 Data Out 2 7
MSB
P/N: PM1211
26
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
Figure 17. Read Data Bytes at Higher Speed (FAST_READ) Instruction Sequence and Data-Out Sequence
CS# 0 SCLK Instruction 24 BIT ADDRESS 1 2 3 4 5 6 7 8 9 10 28 29 30 31
SI
23 22 21
3
2
1
0
SO
High Impedance
CS# 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 SCLK Dummy Byte
SI
7
6
5
4
3
2
1
0 DATA OUT 1 DATA OUT 2 1 0 7 MSB 6 5 4 3 2 1 0 7 MSB
SO
7 MSB
6
5
4
3
2
P/N: PM1211
27
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
Figure 18. Page Program (PP) Instruction Sequence
CS# 0 SCLK Instruction 24-Bit Address Data Byte 1 1 2 3 4 5 6 7 8 9 10 28 29 30 31 32 33 34 35 36 37 38 39
SI
23 22 21 MSB
3
2
1
0
7
6
5
4
3
2
1
0
MSB
CS#
2072 2073 2074 2075 2076 2077 2078
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 SCLK Data Byte 2 Data Byte 3
Data Byte 256
SI
7
6
5
4
3
2
1
0
7 MSB
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
MSB
MSB
P/N: PM1211
2079
REV. 0.01, JUL. 29, 2005
28
www.DataSheet.in
MX25L1605A
Figure 19. Sector Erase (SE) Instruction Sequence
CS# 0 SCLK Instruction 24 Bit Address 1 2 3 4 5 6 7 8 9 29 30 31
SI
7
6
2
1
0
7 MSB
6
2
1
0
Note: SE instruction is 20(hex).
Figure 20. Block Erase (BE) Instruction Sequence
CS# 0 SCLK Instruction 24 Bit Address 1 2 3 4 5 6 7 8 9 29 30 31
SI
23 22 MSB
2
1
0
Note: BE instruction is D8(hex).
P/N: PM1211
29
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
Figure 21. Chip Erase (CE) Instruction Sequence
CS# 0 SCLK Instruction SI 1 2 3 4 5 6 7
Note: CE instruction is 60(hex) or C7(hex).
Figure 22. Deep Power-down (DP) Instruction Sequence
CS# 0 SCLK Instruction SI 1 2 3 4 5 6 7 tDP
Stand-by Mode
Deep Power-down Mode
Figure 23. Release from Deep Power-down and Read Electronic Signature (RES) Instruction Sequence and Data-Out Sequence
CS# 0 SCLK Instruction 3 Dummy Bytes tRES2 1 2 3 4 5 6 7 8 9 10 28 29 30 31 32 33 34 35 36 37 38
SI
23 22 21 MSB High Impedance
3
2
1
0 Electronic Signature Out 7 MSB Deep Power-down Mode Stand-by Mode 6 5 4 3 2 1 0
SO
P/N: PM1211
30
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
Figure 24. Release from Deep Power-down (RDP) Instruction Sequence
CS# 0 SCLK Instruction SI 1 2 3 4 5 6 7 tRES1
High Impedance SO
Deep Power-down Mode
Stand-by Mode
Figure 25. Read Electronic Manufacturer & Device ID (REMS) Instruction Sequence and Data-Out Sequence
CS# 0 SCLK Instruction 2 Dummy Bytes 1 2 3 4 5 6 7 8 9 10
SI
15 14 13
3
2
1
0
SO
High Impedance
CS# 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 SCLK ADD (1)
SI
7
6
5
4
3
2
1
0 Manufacturer ID Device ID 0 7 MSB 6 5 4 3 2 1 0 7 MSB
SO
X
7 MSB
6
5
4
3
2
1
Notes: (1) ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first
P/N: PM1211
31
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
Figure 26. Power-up Timing
VCC VCC(max) Program, Erase and Write Commands are Rejected by the Device Chip Selection Not Allowed VCC(min) Reset State of the Device VWI tPUW tVSL Read Access allowed Device fully accessible
time
P/N: PM1211
32
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
RECOMMENDED OPERATING CONDITIONS
At Device Power-Up AC timing illustrated in Figure A is recommended for the supply voltages and the control signals at device power-up. If the timing in the figure is ignored, the device may not operate correctly.
VCC(min)
VCC
GND tVR tSHSL
CS#
tCHSL tSLCH tCHSH tSHCH
SCLK
tDVCH tCHDX tCLCH LSB IN tCHCL
SI
MSB IN
SO
High Impedance
Figure A. AC Timing at Device Power-Up
Symbol tVR
Parameter VCC Rise Time
Notes 1
Min. 0.5
Max. 500000
Unit us/V
Notes : 1. Sampled, not 100% tested. 2. For AC spec tCHSL, tSLCH, tDVCH, tCHDX, tSHSL, tCHSH, tSHCH, tCHCL, tCLCH in the figure, please refer to "AC CHARACTERISTICS" table.
P/N: PM1211
33
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
ERASE AND PROGRAMMING PERFORMANCE
PARAMETER Write Status Register Cycle Time Sector erase Time Block erase Time Chip Erase Time Page Program Time Erase/Program Cycle 100,000 Min. TYP. (1) 5 90 1 32 1.4 Max. (2) 15 270 3 64 5 UNIT ms ms s s ms cycles
Note: 1. Typical program and erase time assumes the following conditions: 25 C, 3.3V, and checker board pattern. 2. Under worst conditions of 70 C and 3.0V. 3. System-level overhead is the time required to execute the first-bus-cycle sequence for the programming command. 4. The maximum chip programming time is evaluated under the worst conditions of 0C, VCC=3.0V, and 100K cycle with 90% confidence level.
LATCH-UP CHARACTERISTICS
MIN. Input Voltage with respect to GND on ACC Input Voltage with respect to GND on all power pins, SI, CS# Input Voltage with respect to GND on SO Current Includes all pins except VCC. Test conditions: VCC = 3.0V, one pin at a time. -1.0V -1.0V -1.0V -100mA MAX. 12.5V 2 VCCmax VCC + 1.0V +100mA
P/N: PM1211
34
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
ORDERING INFORMATION
PART NO. CLOCK (MHz) MX25L1605AMC-15 MX25L1605AMC-15G MX25L1605AMI-15 MX25L1605AMI-15G MX25L1605AZMC-15G MX25L1605AZMI-15G MX25L1605AM2C-15 MX25L1605AM2C-15G MX25L1605AM2I-15 MX25L1605AM2I-15G 70 70 70 70 70 70 70 70 70 70 OPERATING (mA) 12 12 12 12 12 12 12 12 12 12 STANDBY (uA) 50 50 50 50 50 50 50 50 50 50 0~70C 0~70C -40~85C -40~85C 0~70C -40~85C 0~70C 0~70C -40~85C -40~85C 16-SOP 16-SOP 16-SOP 16-SOP 8-land SON (8x6 mm) 8-land SON (8x6 mm) 8-SOP (200mil) 8-SOP (200mil) 8-SOP (200mil) 8-SOP (200mil) Pb-free Pb-free Pb-free Pb-free Pb-free Pb-free Temperature PACKAGE Remark
CURRENT MAX. CURRENT MAX.
P/N: PM1211
35
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
PART NAME DESCRIPTION
MX 25 L 1605A ZM C 15 G
OPTION: G: Pb-free blank: normal SPEED: 15: 70MHz, for SPI TEMPERATURE RANGE: C: Commercial (0C to 70C) I: Industrial (-40C to 85C) PACKAGE: ZM: SON M: 300mil 16-SOP M2: 200mil 8-SOP
DENSITY & MODE: 1605A: 16Mb TYPE: L: 3V DEVICE: 25: Serial Flash
P/N: PM1211
36
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
PACKAGE INFORMATION
P/N: PM1211
37
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
P/N: PM1211
38
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
P/N: PM1211
39
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
REVISION HISTORY
Revision No. Description 0.01 1. Added 8-SOP(200mil) package information 2. Added "Recommended Operating Conditions" Page Date P1,2,34,35, JUL/29/2005 P38 P33
P/N: PM1211
40
REV. 0.01, JUL. 29, 2005
www.DataSheet.in
MX25L1605A
MACRONIX INTERNATIONAL CO., LTD.
Headquarters:
TEL:+886-3-578-6688 FAX:+886-3-563-2888
Europe Office :
TEL:+32-2-456-8020 FAX:+32-2-456-8021
Hong Kong Office :
TEL:+86-755-834-335-79 FAX:+86-755-834-380-78
Japan Office :
Kawasaki Office :
TEL:+81-44-246-9100 FAX:+81-44-246-9105
Osaka Office :
TEL:+81-6-4807-5460 FAX:+81-6-4807-5461
Singapore Office :
TEL:+65-6346-5505 FAX:+65-6348-8096
Taipei Office :
TEL:+886-2-2509-3300 FAX:+886-2-2509-2200
MACRONIX AMERICA, INC.
TEL:+1-408-262-8887 FAX:+1-408-262-8810
http : //www.macronix.com
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.
www.DataSheet.in


▲Up To Search▲   

 
Price & Availability of 25L1605A

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X